deltaplus#
Initialise parameters as a set of delta functions, plus Gaussian noise.
deltaplus_init#
- hypercoil.init.deltaplus.deltaplus_init(*, shape: Tuple[int, ...], loc: Tuple[int, ...] | None = None, scale: float = 1, var: Tensor = 0.2, key: PRNGKey)[source]#
- Delta-plus initialisation. - Initialise a tensor as a delta function added to Gaussian noise. This can be used to initialise filters for time series convolutions. The initialisation can be configured to produce a filter that approximately returns the input signal (or a lagged version of the input signal). - Parameters:
- shapetuple
- Shape of the tensor to initialise. 
- loctuple or None (default None)
- Location of the delta function expressed as an n-tuple of array coordinates along the last n axes of the tensor. Defaults to the centre of the tensor. 
- scalefloat (default 1)
- Magnitude of the delta function. Defaults to 1. 
- varfloat or Tensor (default 0.2)
- Variance of the Gaussian distribution from which the random noise is sampled. By default, noise is sampled i.i.d. for all entries in the tensor. To change the i.i.d. behaviour, use a tensor of floats that is broadcastable to the specified shape. 
- keyjax.random.PRNGKey
- Pseudo-random number generator key for sampling the Gaussian noise. 
 
- Returns:
- None. The input tensor is initialised in-place.
 
 
DeltaPlusInitialiser#
- class hypercoil.init.deltaplus.DeltaPlusInitialiser(loc: Tuple[int, ...] | None = None, scale: float = 1, var: Tensor = 0.2, mapper: Type[MappedParameter] | None = None)[source]#
- Parameter initialiser following the delta-plus-noise scheme. - Initialise a tensor as a delta function added to Gaussian noise. - See - deltaplus_init_()and- MappedInitialiserfor usage details.- Attributes:
- loc
 
 - Methods - init(model, *[, mapper, loc, scale, var, where])- Initialise a parameter using the specified initialiser and mapper.