LinearCombinationSelector
#
- class hypercoil.nn.confound.LinearCombinationSelector(model_dim: int, num_columns: int, *, key: jax.random.PRNGKey)[source]#
Model selection as a linear combination.
Learn linear combinations of candidate vectors to produce a model. Thin wrapper around
LinearRFNN
without the convolutional layers for learning response functions.- Dimension:
- Input : \((*, I, T)\)
*
denotes any number of preceding dimensions, \(I\) denotes number of candidate model vectors, \(T\) denotes number of time points or observations per vector.- Output : \((*, O, T)\)
\(O\) denotes the final model dimension.
- Parameters:
- model_dimint
Dimension of the model to be learned.
- n_columnsint
Number of input vectors to be combined linearly to form the model.
- Attributes:
- weighttensor
Tensor of shape \((I, O)\) n_columns x model_dim.